Allele Frequency / Antigen Frequency

- Terminology not well standardised
 - allele frequency \(g_i \) = frequency of the gene in the theoretical gene pool of a population: \(\sum g_i = 1 \)
 - “antigen” frequency \(f_i \) = observed frequency of a „trait“ in the individuals of a population: \(\sum f_i = 1 \)
 - For a population in Hardy-Weinberg-Equilibrium the following holds: \(f_i = g_i \)
- For codominant traits, \(f_i \) can be estimated by counting.
- Counting \(g_i \) is hampered by individuals with only one „marker“ without proof of homozygosity (missing data).

Haplotype Frequency Estimation (HFE)

- Missing data is a common problem in statistics.
- Types of missing information in HFE
 - phase of alleles
 - typing ambiguities
 - undetectable alleles
- Dealing with missing information requires some assumptions (here: Hardy-Weinberg-Equilibrium).
- General approach: Maximum-likelihood and expectation-maximisation-algorithm.

Comparing Allele / Antigen Frequencies

- Methodology
 - Comparing two Bernoulli-Distributions
 - \(\chi^2 \)-test
 - Fisher’s exact test
 - Correcting for multiple comparisons
 - Bonferroni correction
 - Holm–Bonferroni method
- Main Caveats
 - Depending on the underlying raw data, for allele frequency data the additional variance induced by the estimation process has to be taken into account.
 - Are your control frequencies really suitable?
 - Did you fix the whole study approach including any hypothesis in writing before starting the study?
Comparing Haplotype Frequencies

Complicated field with many frequently overlooked pitfalls!
• The number of haplotypes in a population is too big to use a hypothesis-free “fishing approach” in combination with the Holm-Bonferroni method.
• Additional variance induced by the estimation process generally relevant.
• Genetic distances must be used with care due to the high fraction of “noise” at low frequencies.
• Bootstrapping based methods can be used to overcome these difficulties.

Haplotype Frequencies
Application in HSC Donor Search
• The majority of HSC donors on match lists have ambiguous HLA data (serology, multiple allele codes, missing data for relevant loci).
• Known haplotypes can reduce this ambiguity by many orders of magnitude (see example: 10^{11}).
• Haplotype frequencies can be used to calculate matching probabilities for ambiguous loci.
• Predictions are excellent with some caution necessary at the low end.

Match List Example

Match List with Probabilities